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The models constructed by Affleck, Kennedy, Lieb, and Tasaki �AKLT� �Phys. Rev. Lett. 59, 799 �1987��
describe a family of quantum antiferromagnets on arbitrary lattices, where the local spin S is an integer
multiple M of half the lattice coordination number. The equal-time quantum correlations in their ground states
may be computed as finite temperature correlations of a classical O�3� model on the same lattice, where the
temperature is given by T=1 /M. In dimensions d=1 and 2 this mapping implies that all AKLT states are
quantum disordered. We consider AKLT states in d=3 where the nature of the AKLT states is now a question
of detail depending upon the choice of lattice and spin; for sufficiently large S some form of Néel order is
almost inevitable. On the unfrustrated cubic lattice, we find that all AKLT states are ordered, while for the
unfrustrated diamond lattice the minimal S=2 state is disordered while all other states are ordered. On the
frustrated pyrochlore lattice, we find �conservatively� that several states starting with the minimal S=3 state are
disordered. The disordered AKLT models we report here are a significant addition to the catalog of magnetic
Hamiltonians in d=3 with ground states known to lack order on account of strong quantum fluctuations.
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I. INTRODUCTION

Quantum antiferromagnets have been a fertile field of re-
search for a half century, exhibiting a great richness and
variety of physical phenomena. In more recent decades, start-
ing with Anderson’s introduction of the resonating valence
bond �RVB� state1 and accelerating with the discovery of the
cuprate superconductors,2 much attention has focused on an-
tiferromagnets that allow disordered ground states due to a
mix of frustration and quantum fluctuations.3 In an important
step, Affleck et al.4 showed how to construct models that
build in a great deal of both these effects by using local
projectors—models for which �essentially unique� ground
states can be determined analytically. The Affleck, Kennedy,
Lieb, and Tasaki �AKLT� models have spins given by S
= z

2 M, where M is any integer and z is the lattice coordination
number. The associated ground states have the added feature
that their wave functions can be written in Jastrow �pair
product� form. A general feature of such wave functions is
that the ground-state probability densities can be viewed as
Boltzmann weights corresponding to a local, indeed, nearest-
neighbor Hamiltonian for classical spins on the same lattice.
Using this unusual quantum-classical equivalence we can un-
derstand many properties of the states via Monte Carlo simu-
lations of the associated classical model.

In d=1 and 2, the AKLT states are disordered5 for any
spin due to the Hohenberg-Mermin-Wagner theorem. In par-
ticular, the d=1 case is the celebrated AKLT chain which
realizes the S=1 Haldane phase. In this paper, we study
AKLT states in d=3, which are relatively less well under-
stood than their one- and two-dimensional counterparts.
Moreover, in three dimensions, the Hohenberg-Mermin-
Wagner theorem no longer applies, and therefore whether an
AKLT state of a given spin is disordered or instead exhibits
long-range order is no longer automatic. Instead a computa-
tion is now required to settle this question, and it is this issue

that we address in this paper by a combination of mean-field
arguments and Monte Carlo simulation. Specifically, we dis-
cuss the AKLT states on the simple cubic and diamond lat-
tices, where there is no �geometrical� frustration, as well as
on the highly frustrated pyrochlore lattice, where the atten-
dant complications lead to a macroscopic ground-state de-
generacy of the associated classical model. Of course, all the
models we study have frustration from competing interac-
tions.

On the cubic lattice we find that all AKLT states starting
with the “minimal” �smallest spin� S=3 state are ordered
with the standard two-sublattice Néel pattern. The diamond
lattice has a small coordination number and thus larger fluc-
tuations, and we find that on it the minimal S=2 state is
disordered while all higher spin states are ordered with the
two-sublattice Néel pattern. On the pyrochlore lattice, the
geometrical frustration of the lattice plays a significant role.
In mean-field theory for the companion classical model we
find a macroscopic number of solutions corresponding to as
many energy minima. While the mean-field estimate for the
critical spin �transition temperature� already indicates that
the minimal S=3 model on the pyrochlore lattice is disor-
dered, the large number of competing states indicates that the
true boundary between disorder and some form of order lies
at much larger values of spin. Indeed, a basic simulation
leads to a conservative bound in which disordered ground
states persist up to S=15. Given the unphysical complexity
of the AKLT Hamiltonians at such large spins, we do not
pursue a more precise determination of this boundary in this
work. Indeed, readers may take as the main fruits of our
work the identification of the S=2 AKLT model on the dia-
mond lattice and the S=3 AKLT model on the pyrochlore
lattice as �not too common� instances of three-dimensional
�3D� spin Hamiltonians with quantum-disordered ground
states.

It is worth noting that models with quantum-disordered
ground states are currently objects of intense interest in the
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context of topological order, and more specifically, in the
context of topological quantum computing. We note that our
disordered models do not yield topologically ordered states;
they do not possess a topological degeneracy or host frac-
tionalized excitations. The disordered states herein are de-
scribed either as fully symmetric valence-bond solids or, in
the long-wavelength sense, as quantum paramagnets. To un-
derstand why this is the case, it is instructive to recall how a
closely related strategy works to produce topologically or-
dered states in S=1 /2 models, including instances in d=3.
This strategy, initiated by Chayes et al.6 and brought to frui-
tion in work by Raman, Moessner, and Sondhi �RMS� �Ref.
7�, works with spin-1

2 analogs of the AKLT models called
Klein models.8 Unlike the AKLT models, Klein models have
many ground states—indeed they select the macroscopically
many nearest-neighbor valence-bond coverings of a lattice.
This selection of a degenerate manifold underlies the emer-
gence of topological order. More precisely, the work of RMS
showed that Klein models could be controllably perturbed on
a family of lattices in order to select a topologically ordered
�RVB� state in this ground-state manifold. In this fashion
they could construct SU�2� symmetric models with Z2 topo-
logical order in d=2 and with Z2 and U�1� order in d=3.9

The rest of this paper is organized as follows. In Sec. II,
we present a brief summary of the AKLT construction. We
then proceed in Sec. III to review the mean-field analysis of
the AKLT states.10 We then specialize in Sec. IV to bipartite
lattices and compute the transition temperature for the simple
cubic and diamond lattices using Monte Carlo simulations.
We determine that while the simple cubic lattice exhibits
Néel order for all choices of M �and thus S�, the diamond
lattice allows a quantum-disordered state in the M =1�S=2�
case. We then go on to discuss the AKLT states on the frus-
trated 3D pyrochlore lattice and discuss the mean-field
analysis and classical ground states in this case. We find that
the pyrochlore lattice admits quantum-disordered states for
many values of M; while the exact value of Mc was not
determined, we find evidence from simulations that it ex-
ceeds 5, corresponding to S=15.

II. AKLT STATES: A BRIEF REVIEW

The central idea of the AKLT approach4 is to use the idea
of quantum singlets to construct correlated quantum-
disordered wave functions, which are eigenstates of local
projection operators. One can then produce many-body
Hamiltonians using projectors that extinguish the state,
thereby rendering the parent wave function an exact ground
state, typically with a gap to low-lying excitations. A general
member of the family of valence-bond solid �AKLT� states
can be written compactly in terms of Schwinger bosons,11

���L;M�� = �
�ij�

�bi↑
† bj↓

† − bi↓
† bj↑

† �M�0� . �1�

This assigns M singlet creation operators to each link �ij� of
a lattice L. The total boson occupancy per site is given by
zM, where z is the lattice coordination number, and the re-
sultant spin on each site is given by S= 1

2zM. Thus, given any
lattice, the above construction defines a family of AKLT

states with S= 1
2zM, where M is any integer. The maximum

possible spin on any link is then Sij
max=2S−M, and therefore

���L ;M�� is extinguished by any Hamiltonian constructed
out of projectors PJ�ij� onto link spin J, provided that 2S
−M +1�J�2S. The projectors, which transform as SU�2�
singlets, may be written as polynomials in the Heisenberg

coupling S� i ·S� j of order 2S. Explicitly, one has

PJ�ij� = �
J�=0

�J��J�

2S S� i · S� j + S�S + 1� −
1

2
J��J� + 1�

1

2
J�J + 1� −

1

2
J��J� + 1�

. �2�

The AKLT states have a convenient representation in
terms of SU�2� coherent states, as first shown in Ref. 11. In
terms of the Schwinger bosons, the normalized spin-S coher-
ent state is given by �n̂�= �p!�−1/2�z�b�

† �p�0�, where p=2S and
z= �u ,v�, a CP1 spinor, with u=cos�� /2� and v=sin�� /2�ei�.
The unit vector n̂ is given by na=z†�az, where �� are the
Pauli matrices. In the coherent-state representation, the gen-
eral AKLT state wave function is the pair product �
=��ij��uiv j −viuj�M. Following Ref. 11, we may write ���2
	exp�−Hcl /T� as the Boltzmann weight for a classical O�3�
model with Hamiltonian

Hcl = − 

�ij�

ln�1 − n̂i · n̂j

2
� �3�

at temperature T=1 /M. All equal-time quantum correlations
in the state ��� may then be expressed as classical finite
temperature correlations of the Hamiltonian Hcl.

The consequences of this exact quantum-to-classical
equivalence, which is a general feature of Jastrow �pair prod-
uct� wave functions, were noted in Ref. 11. This representa-
tion is also useful in establishing exact results, such as the
existence of a unique infinite-volume ground state on the
honeycomb lattice.12

On one- and two-dimensional lattices, the Hohenberg-
Mermin-Wagner theorem precludes long-ranged order13 at
any finite value of the discrete quantum parameter M. Thus,
while the S=2 Heisenberg model on the square lattice is
rigorously known to have a Néel-ordered ground state,14 the
S=2 AKLT Hamiltonian, which includes up to biquartic
terms, has a featureless quantum-disordered ground state
called a “quantum paramagnet.” In three dimensions, we ex-
pect Néel order for large M, corresponding to low tempera-
tures in the classical model. If the Néel temperature for Hcl
on a given lattice satisfies Tc�1, then Mc�1, and all the
allowed AKLT states on that lattice exhibit long-ranged or-
der. The issue of whether or not the AKLT states can be in
the quantum-disordered phase on a given lattice can be in-
vestigated by a combination of mean-field calculations and
classical Monte Carlo simulations, which we present below.

III. MEAN-FIELD THEORY

A mean-field analysis of the classical model of Eq. �3� on
bipartite lattices was described in Refs. 10 and 11. In the
general case, we may begin with the Hamiltonian of Eq. �3�,
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and we write n̂i=m� i+	n̂i, with �n̂i�=m� i. Expanding Hcl to

order 	n̂i, we obtain the mean-field Hamiltonian H̃MF=E0

−
ih� i · n̂i, where the mean field h� i is given by

h� i = − 

j

�
m� j

1 − m� i · m� j

, �4�

where the prime restricts the sum on j to nearest neighbors of
site i. Self-consistency then requires

m� i = �n̂i� =
 dn̂in̂i exp�h� i · n̂i/T�

 dn̂i exp�h� i · n̂i/T�
, �5�

which yields m� i=mih� i / �h� i�, with the local magnetization

mi = coth�hi

T
� −

T

hi
. �6�

IV. UNFRUSTRATED LATTICES: SIMPLE CUBIC AND
DIAMOND

A. Mean-field transition

On an unfrustrated bipartite lattice a sublattice rotation
n̂i→
in̂i, with 
i= �1 on the A �B� sublattice, results in a
ferromagnetic interaction, and if we posit a uniform local
magnetization m� we obtain the mean field

h =
zm

1 + m2 , �7�

where z is the lattice coordination number. This results in a
mean-field transition temperature Tc

MF= 1
3z, i.e., Mc

MF=3z−1.
All AKLT states on bipartite lattices in more than two space
dimensions will exhibit two-sublattice Néel order, provided
that M �Mc. According to the mean-field analysis, long-
ranged order should pertain for z�3, which would be satis-
fied by almost any three-dimensional structure. However,
mean-field theory ignores fluctuations; hence it overesti-
mates Tc and underestimates Mc. Therefore the possibility
remains that a quantum-disordered AKLT state may exist in a
three-dimensional lattice. We examine two cases, the simple
cubic lattice �z=6� and the diamond lattice �z=4�. We shall
address this issue via classical Monte Carlo simulations of
our model on both lattices. We note that, of these, the dia-
mond lattice is the stronger candidate since it is more weakly
coordinated, and Mc

MF= 3
4 is sufficiently close to threshold

that fluctuations are likely to drive the true Mc to be greater
than unity.

B. Monte Carlo simulations

The classical Hamiltonian Hcl of Eq. �3� consists of
nearest-neighbor interactions v�ij�, where ij =cos−1�n̂i · n̂j�
is the relative angle between spins on neighboring sites i and
j, and v��=−ln sin2� 1

2�. This interaction strongly sup-
presses ferromagnetic alignment, with a logarithmically infi-

nite barrier, but has a smooth quadratic minimum v��
� 1

4 �−��2 when ��. We have simulated the equivalent
ferromagnetic model with interaction v��=−ln cos2� 1

2�.
We used a multithread Monte Carlo approach, in which

simultaneous simulations with independent initial configura-
tions were used to produce M-independent Markov chains
each with N configurations,15 which were then written to a
file. For every independent thread, we performed checker-
board sweeps of the lattice using a standard Metropolis
Monte Carlo technique.16 In each Monte Carlo step, we pro-
duced a vector 	n̂, with length distributed according to a
Gaussian and pointing in a random direction, which was
used to generate a new spin unit vector

n̂i� =
n̂i + 	n̂

�n̂i + 	n̂�
. �8�

The standard deviation of the Gaussian was adjusted by hand
until a significant fraction of proposed moves were accepted
�we left it at �=0.5�.

The number of Monte Carlo steps per site �MCS� and the
number of independent threads were adjusted to count
roughly the same number of autocorrelation times for each
sample size.17 For each chain, we obtained the average value
of the Binder cumulant and averaged this across chains to get
a single number for each temperature. We estimated the error
from the standard deviation of the M-independent thread av-
erages. This is free of the usual complications of correlated
samples inherent in estimating the error from a single chain,
and it frees us of the need to compute autocorrelation times
to weight our error estimate.

Plots were made of the Binder cumulant,18 defined to be

B = 1 −
��M� 2�2�

3�M� 2�2
, �9�

where M� =
in̂i is the total magnetization.
For any system of Heisenberg spins in the thermodynamic

limit, the Binder cumulant has a value of 2
3 in the low-

temperature �ordered� phase and a value of 4
9 in the high-

temperature phase. These are easily seen by assuming a

Gaussian distribution for �M� � at high temperature and using

the result that all the expectation values of powers of M� ·M�

are equal in the ordered phase. For a finite system, the lim-
iting values continue to be close to these estimates, but the
interpolating behavior is different for each system size; the
primary utility from our point of view is that finite-size scal-
ing analysis of B reveals that it has a fixed point at the
transition temperature.18 We may therefore determine Tc by
plotting the Binder cumulant for a series of different lattice
sizes and determining the points where the curves cross.

Before simulating our modified interaction, we checked
our code by determining the �known� transition temperatures
for the standard Heisenberg model on the simple cubic
lattice16 and the Ising model on both the diamond and the
simple cubic lattices,19 as well as comparing the high-
temperature susceptibility from simulations to the predic-
tions of the high-temperature expansion.20 All these agreed
well with the expected values, at least to the accuracy we
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need to determine whether Tc is less than or greater than 1.
Recall that if Tc�1, then Mc�1, which means that the mini-
mal AKLT state, with M =1, is on the disordered side of the
phase transition.

Using our Monte Carlo simulations, we obtain estimates
of Tc for the families of AKLT states on the simple cubic and
diamond lattices �see Fig. 1�. Although our simulation tech-
niques were not particularly sophisticated, they were suffi-
cient to pin down Tc to a reasonable degree of accuracy and
certainly enough to determine whether Tc�1. Our simula-
tions allow us to estimate that Tc

SC�1.66 on the simple cubic
lattice and that Tc

D�0.85 for the diamond structure. There-
fore, we conclude that while all the simple cubic AKLT
states are Néel ordered, the minimal �S=2� AKLT state in
diamond is a featureless quantum-disordered state.

V. FRUSTRATED LATTICE: THE PYROCHLORE

The pyrochlore is a lattice of corner-sharing tetrahedra
and can be constructed from the diamond lattice by placing a
site at the midpoint of each bond, resulting in a quadripartite
structure �Fig. 2�. The pyrochlore lattice is highly frustrated
from the perspective of collinear antiferromagnetism; the ca-
nonical nearest-neighbor classical Heisenberg antiferromag-
net on this lattice has an extensive ground-state degeneracy
and remains a quantum paramagnet at all temperatures.21

Our problem has a different form for the interaction, and
hence the results for the nearest-neighbor problem, which
build on the high degree of degeneracy for a single tetrahe-
dron, do not apply. Indeed, as we discuss below, the logarith-
mic form of the interaction energy leads to the selection of a
unique single-tetrahedron ground state up to global rotations.
However, the full lattice still exhibits a substantial ground-
state degeneracy on account of its open architecture, indicat-
ing an anomalously low transition temperature which we

roughly bound from above by T�0.2. We now turn to the
details of these assertions.

A. Single-tetrahedron ground states

Numerical minimization on a single tetrahedron finds the
lowest-energy configuration to be the one where each pair of
spins make an angle ij =cos−1�n̂i · n̂j�=cos−1�− 1

3 �. This
means that the spins are pointing either toward or away from
the corners of a regular tetrahedron in three-dimensional spin
space. We proceed to search for soft modes by expanding the
energy to quadratic order and studying the resulting normal
modes. We find that there are three zero modes, correspond-
ing to global rotations. One of these may be thought of as a
mode in which three spins rotate about the axis defined by
the fourth and leads to a degeneracy of ground states of the
full lattice as discussed below.

We note that for the Heisenberg antiferromagnet with in-
teraction n̂i · n̂j, the single-tetrahedron Hamiltonian is H�

FIG. 1. �Color online� Binder cumulant plots for the valence-bond states on the cubic and diamond lattices. The T-axis scale is chosen
using a rough estimate of Tc so as to provide approximately the same window in natural units T /Tc for both cases. In each case, the total
number of spins being simulated is 2L3. We perform a fit of the data �weighted by the error bars� to a parabola and estimate Tc from the
intersection of the best-fit lines. We can be reasonably confident that the curves have an intersection from the fact that they change order on
either side of the crossing and become separated by more than a standard deviation as we move away from the crossing. We obtain Tc

�1.66 for the cubic lattice and Tc�0.85 for diamond.

FIG. 2. �Color online� The quadripartite pyrochlore lattice,
which is formed out of corner-sharing tetrahedra.

PARAMESWARAN, SONDHI, AND AROVAS PHYSICAL REVIEW B 79, 024408 �2009�

024408-4



= �M� ��2, where M� �=
i��n̂i is a sum of the spin vectors over
all sites in the tetrahedron �. The ground-state manifold
M� �=0 is then five dimensional, since one can choose any
two vectors n̂A and n̂B, then take n̂C=−n̂A and n̂D=−n̂B. The
four freedoms associated with choosing n̂A and n̂B are then
augmented by another freedom to rotate the C and D spins
about the direction n̂A+ n̂B. A large-N analysis22 finds that the
O�N� pyrochlore antiferromagnet is paramagnetic down to
T=0.

B. Ground states on the full lattice

There are many ways in which we can construct degener-
ate states on the lattice that simultaneously satisfy the
minimum-energy constraint on every tetrahedron. We begin
by describing the simplest of such states which form a dis-
crete family. To this end, we label the four spins defined by
the single-tetrahedron constraint �with a fixed joint orienta-
tion� as A, B, C, and D. If we use only these four orientations
for each spin, we have the constraint that none of them can
occur twice on the same tetrahedron; this translates to the
statement that spins on neighboring links must be different.
This is the same constraint as for ground states of the anti-
ferromagnetic four-state Potts model. We therefore conclude
that one family of ground states of the classical Hamiltonian
on the pyrochlore lattice is in a one-to-one correspondence
with the ground states of the four-state Potts antiferromagnet
on the pyrochlore lattice. Readers familiar with the lore on
the kagome problem23 will recognize the resemblance to the
planar ground states there which are in correspondence to
ground states of the three-state Potts model. As in the
kagome problem, from this set of ground states others can be
constructed by identifying sets of spins which can be locally
rotated by an arbitrary amount at zero-energy cost. These are
sets of spins, say of type B, C, and D which are connected to
other spins solely by spins of type A. Clearly one can rotate
this set by an angle about the A axis at zero-energy cost.

While we have not parametrized the full continuous space
of ground states, an extensive lower bound on the degen-
eracy of the “Potts submanifold” of ground states can be
obtained as follows. First, we note that the number of al-
lowed configurations of the three-state Potts model on a
kagome lattice with M sites is given23,24 by gk
��1.208 72��2M/3�. Next we partition the pyrochlore into four
sublattices so that the sites that lie on a single tetrahedron are
each on different sublattices. Choose one sublattice and fix
the spins on that sublattice to be one of the four types �say
A�. Now, looking down through the tetrahedra, one sees al-
ternating layers of triangular and kagome planes; the kagome
planes are made up of B, C, and D spins, while the triangular
planes are made up of A spins. In each kagome plane, we
have M spins, whose configurations are those of the three-
state Potts model. If we now let Nk be the number of kagome
planes, we must have that MNk= 3

4N, where N is the total
number of spins in the system. We then have for the number
of states in this restricted submanifold

grestricted = 4gk
Nk � 4�1.208 72�N/2, �10�

where the factor of 4 stems from the fact that we can choose
any one of the four spins to be fixed in the triangular planes.

Since we have restricted ourselves to considering a certain
submanifold of the ground states in the above argument, it is
clear that we have obtained a lower bound for the degeneracy
of the Potts submanifold.

C. Bounds on Tc

Each of the ground states identified above can serve as a
basis for a mean-field treatment of the system and all of them
yield the same Tc

MF. This vast set of “soft modes” is, of
course, a signature that the true Tc�Tc

MF. Thus we may be-
gin with a calculation of Tc

MF which can serve as an upper
bound on the true Tc.

Consider a spin at site i in the pyrochlore lattice. Expand-
ing in small fluctuations about any ground state, we have the
same mean-field Hamiltonian as in the general mean-field
ansatz of Sec. III with the mean field given by Eq. �4�. In a
mean-field treatment, each of the neighbor spins n̂j is to be
replaced by its average m� j = �n̂j�=mêj in the particular ground
state that we are considering. In any ground state, we note
that the angle between any pair of nearest neighbors is ij

=cos−1�− 1
3 �. In addition, the spins on a tetrahedron add to

zero, which allows us to write 
 j�m� j =−m� i. If we further re-
call that each spin lies on exactly two tetrahedra, we obtain
the following expression for the mean field acting at site i:

h� i = − 

j

�
m� j

1 − m� i · m� j

=
2m

1 +
m2

3

êi. �11�

Note that we have only made use of the local structure of the
ground state, and so our treatment here is relevant for the
transition into any state in the ground-state manifold. Substi-
tuting the mean field in Eq. �11� into the self-consistency
condition �Eq. �6��, we find, in a manner similar to the bi-
partite case, that the mean-field estimate of the transition
temperature is Tc

MF= 2
3 . From this alone we conclude that the

M =1 state on the pyrochlore lattice is quantum disordered.
There is little question that the actual Tc is much lower

than the mean-field estimate and therefore Mc is much higher
than 3

2 , allowing many more quantum-disordered states. As is
familiar from other highly frustrated magnets, where the
ground-state manifold encompasses a vastly degenerate set
of states, the transition will be driven by the “order-by-
disorder” mechanism wherein a particular state or subset of
states is favored by entropic effects at low temperatures. This
is a weak effect, and hence Tc is typically a small fraction of
Tc

MF.
While we have not performed an extensive Monte Carlo

analysis on the pyrochlore lattice owing to the complexity of
the ground state and the difficulty of defining a simple order
parameter, prior experience with pyrochlore antiferromag-
nets suggests that the transition temperature is sufficiently
small that the corresponding AKLT Hamiltonians are rather
complicated functions of the spins; thus there is little reason
in the current context to locate the transition or the nature of
the ordered phase with greater precision. However, we note
that the same set of ground states arises in the classical
Heisenberg model with nearest-neighbor bilinear and biqua-
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dratic interactions with the latter chosen to disfavor col-
linearity. This is a physically plausible model and we will
report a fuller investigation of it elsewhere.25

VI. CONCLUDING REMARKS

To summarize, we have studied AKLT states on two un-
frustrated and one frustrated lattice in d=3 by a combination
of mean-field theory and Monte Carlo simulations for the
associated classical models. We find that the simple cubic
lattice is Néel ordered at all values of the singlet parameter
M and spin S; the diamond lattice, on the other hand, is
quantum disordered for M =1 �S=2� and Néel ordered for
M �1. On the pyrochlore lattice we find that the M =1 �S
=3� model is definitely disordered and the boundary between
disorder and order very likely lies above M =5.

While quantum-disordered ground states in low �i.e., one
and two dimensions� have often been discussed, three dimen-
sions has historically been the province of long-range order.
Hence our disordered models on the diamond and pyrochlore
lattices significantly expand the set of possibilities for quan-

tum ground states of models with Heisenberg symmetry in
d=3.

In a recent work, one of us has generalized the AKLT
construction to SU�N� spins.10 In the near future, we intend
to investigate the SU�4� simplex state on the pyrochlore lat-
tice introduced in this work by methods similar to the ones
used in the present paper.26
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